Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.12.05.23299462

ABSTRACT

Abstract Background Understanding the kinetics and longevity of antibody responses to SARS-CoV-2 is critical to informing strategies toward reducing Coronavirus disease 2019 (COVID-19) reinfections, and improving vaccination and therapy approaches. Methods We evaluated antibody titers against SARS-CoV-2 nucleocapsid (N), spike (S), and receptor binding domain (RBD) of spike in 98 convalescent participants who experienced asymptomatic, mild, moderate or severe COVID-19 disease and in 17 non-vaccinated, non-infected controls, using four different antibody assays. Participants were sampled longitudinally at 1, 3, 6, and 12 months post-SARS-CoV-2 positive PCR test. Findings Increasing acute COVID-19 disease severity correlated with higher anti-N and anti-RBD antibody titers throughout 12 months post-infection. Anti-N and anti-RBD titers declined over time in all participants, with the exception of increased anti-RBD titers post-vaccination, and the decay rates were faster in hospitalized compared to non-hospitalized participants. <50% of participants retained anti-N titers above control levels at 12 months, with non-hospitalized participants falling below control levels sooner. Nearly all hospitalized and non-hospitalized participants maintained anti-RBD titers above controls for up to 12 months, suggesting longevity of protection against severe reinfections. Nonetheless, by 6 months, few participants retained >50% of their 1-month anti-N or anti-RBD titers. Vaccine-induced increases in anti-RBD titers were greater in non-hospitalized relative to hospitalized participants. Early convalescent antibody titers correlated with age, but no association was observed between Post-Acute Sequelae of SARS-CoV-2 infection (PASC) status or acute steroid treatment and convalescent antibody titers. Interpretation Hospitalized participants developed higher anti-SARS-CoV-2 antibody titers relative to non-hospitalized participants, a difference that persisted throughout 12 months, despite the faster decline in titers in hospitalized participants. In both groups, while anti-N titers fell below control levels for at least half of the participants, anti-RBD titers remained above control levels for almost all participants over 12 months, demonstrating generation of long-lived antibody responses known to correlate with protection from severe disease across COVID-19 severities. Overall, our findings contribute to the evolving understanding of COVID-19 antibody dynamics. Funding Austin Public Health, NIAAA, Babson Diagnostics, Dell Medical School Startup.


Subject(s)
COVID-19 , Coronavirus Infections
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.31.428824

ABSTRACT

Three pathogenic human coronaviruses have emerged, with SARS-2 causing a global pandemic. While therapeutic antibodies targeting the SARS-2 spike currently focus on the poorly conserved receptor-binding domain, targeting essential neutralizing epitopes on the more conserved S2 domain may provide broader protection. We report three antibodies binding epitopes conserved on the pre-fusion MERS, SARS-1 and SARS-2 spike S2 domains. Antibody 3A3 binds a conformational epitope with ~2.5 nM affinity and neutralizes in in vitro SARS-2 cell fusion and pseudovirus assays. Hydrogen-Deuterium exchange mass spectrometry identified residues 980-1006 in the flexible hinge region at the S2 apex as the 3A3 epitope, consistent with binding to natural and engineered spike variants. This location at the spike trimer interface suggests 3A3 prevents the S2 conformational rearrangements required for virus-host cell fusion. This work defines a highly conserved vulnerable site on the SARS-2 S2 domain and may help guide design of pan-protective spike immunogens.


Subject(s)
Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL